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2 s 5 0  P 
One- and two-center Coulomb-type integrals of the form 

/EN, L, M]ai0i,2[Nt, L', M']t&~'id~z, 

where 01 and 0 2  are the two-particle operators + ~ I ~ - ~ ( ~ z I ~ ~ - Y I z ~ )  and 3rK5 ( ~ 1 2 ~ - y 1 2 ~ ) ,  respectively, needed 
in the evaluation of zero-field splitting, are evaluated in closed analytical form. * 

1. INTRODUCTION 

HERE has been much concern recently over the T origin and calculation of the three component 
levels of a triplet state in a molecule even when no 
external fields are It is now clear that this 
zero-field splitting of the spin multiplet is a manifesta- 
tion of pure spin-spin interaction and can be repre- 
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sented by the Hamiltonians term 

where g is the gyromagnetic ratio, /3 is the Bohr mag- 
neton, si is the spin vector of the ith electron (in units 
of h)  , and rii is the position vector connecting electrons 
i andj. 

To obtain the matrix elements of a' over a basis con- 
sisting of general atomic orbitals (AO's) on Atom a, 
xa, xd, and AO's on Atom b, X b ,  x;, we can reduce the 
calculation to the evaluation of the following two types 
of two-center Coulomb-type integrals'O (see Fig. 1 for 

0 11. 

and E. 
A t o m  

D. MacLachlan, Mol. Phys. 6, 441 (1963); H. A. Bethe 
E. Saipeter Qzrantzm ibf echaniw u j  Om- and Too-Eliitron 
(Academic Press Inc., New York, 1957), p. 181. 

10 Two-center exchange type integrals also appear, but as they 
cannot be evaluated by the methods of this paper, thcy will be 
ignored for the present. 
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, TABLE I. Transforms of [ N ,  L, M ]  for N =  1, 2, 3. 

c1 SIT= p4 ( ~ 2 + p 2 )  -2 

[2 SI'= ( 1/3)  p4[4p2 ( K 2 + p 2 ) - 3  - ( K2+p2)"] 

C2PZ-J' 

[2PII]' 

[2P]liT 

c3 s 

[3 PZ]T 

[3 PIIIT 

[3PFIIT 

P1( COSU) 

P l y  COSU) cosv 

PI1 (cosu) sinv 

- ( ~ 2 + p 2 ) - - 3 1  

Pl(C0SU) 

= (2/5) ikP5[6p2( k2+P2)-'- ( k2+p2)-'] 

= ( 2/9)GP6[P2( k2++p2)-a- ( K2+p2]-3] 

P1' (COSU) cosv 

P1' ( cosu) sinv 

2GP2 (COSU) 

2 P21 (COSU) cosv 

2 P2'( cosu) sinv 

P22( COSU) cos2v 

PZ2 (cosu) sin% 

the appropriate notation) : 

I 

~ 

h = / X a  ( 1) X i  ( 1) OZXb (2) Xbl(2) dT1dT2, ( 2 )  

where O1 and 02 are the following two-particle operators 

ol=+r12-5(3Z1+r12z) = r12 -3~2(~~~e12)  ; 

02= 3rl~--~(X12~-~12~) = r 1 z - 3 ~ 2 2 ( ~ ~ ~ e 1 2 )  ~ 0 ~ 2 4 ~ .  ( 3 )  

arise from the use of Slater AO's with arbitrary values 
In what follows, we consider all the possibilities that 

for the effective nuclear charges and with principal 
quantum numbers 1 and 2 .  All these integrals for the 
two-center case (as well as the one-center case) are 
obtained in closed analytical form here. Other authors 
have attempted to approximate these integrals by 
using Gaussian AO's3 or point charge  formula^^^^ in the 
two-center cases, and only special one-center cases4~8~1 
have been done analytically, but to the author's 
knowledge, no systematic study is available. 

I 

- .  
l lR.  M. Pitzer, C. W. Kern, and W. N. Lipscomb, J. Chem. 

Phys. 37, 267 (1962). 

11. CHOICE OF ORBITALS AND METHOD OF 
EVALUATION 

We adhere as closely as possible to the notation, 
choice of AO's, units, and coordinate system as used by 
Koothaan.12 Rather than using Slater atomic orbitals 
(n, I, m) directly in the evaluation of the integrals of 
Eq. (2)' we evaluate the integrals Zl and Z2 over basic 
charge distributions12 [AT, L, M ] .  

ELECTRON 

FIG. 1. Coordinate system. 

l2 C. C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951). 
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TABLE 11. Integrals 1, over auxiliary functions A and B.  
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TABLE 111. Integrals Zz over auxiliary functions A and B .  
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TABLE IV. Expressions for the Fn(y) of Eq. (20) for n=O, 1, 2, - ., 7. 

-(l+-+-+-+~)e-~ 10 45 105 105 24-41 

YS Y Y2 Y3 Y 

10 240 7200 201 600 3628800 - -+- - 
Y7 Y9 Y" 

604800 21 772 800 479001 600 +-- + ,,13 Y9 Y" 

14 50.2 25200 1411200 21.10! I 7-12! 14!) -- 
Y9 Y" TI3 YI6 

+ 
28 378 3150 17325 62370 135 135 135 135 +- +- 

Y5 Y6 

If (n ,  I ,  m)  is a Slater orbital For the cases involvina the DrinciDal quantum numbers 

(4) are denoted by N S ,  N P Z ,  NPH,  Ail%, NDZ, NDII, 
NDU, NDA, and NDX. Roothaan gives explicit ex- 
pressions12 for the product of two Slater orbitals in- 
volving s and p electrons in terms of the basic charge 
distributions. 

where 

and 

S t , m ( e , + )  =[ - 
sde, +) = [ (21+ 1) /~ .R]$P~(   COS^) , 

21+1 ( I -  1 m 1 
ml ~ case) Thus, the integrals that are evaluated here are 

2~ ( I + l m l ) !  

then the product of two Slater orbitals with orbital =[NLM, 1 1 I N'L'M;]; ( 7 4  
exponents 

[N, L, M1=[(2L+1)/4~]* 

and 5; on the same center can be decom- 
posed to a sum of basic charge distributions [N, L, M] I 2 = / [ N ,  L, M]a102[N', L', M ' l d ~ l d ~ 2  

x { 2L (s;+s;) "+'/ ( N +  L+ 1) ! 1 yN-1 
= [NLM, I 2 1 N'L'M;]. (7b) 

X exp[-[S-~+l~]r) S L . M ( e ,  4 ) .  (6) The Fourier convolution method noted by Prosser and 
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TABLE V. A (2m; 1, 1) and B(2mfl ;  1, 1) in terms of Fn(y) for different charges. 

A (0; 1, 1) = + (1/2) ?rR(P2-a2)-1j-J?Fo(P) -aFo(a)]  

~ ( 2 ;  1, 1) = - (23 .2! ) -1~R(~2-- (y2) -1[P3F2(~)  -CY3F2(a)] 

A (4; 1, 1) =+ (25.4!)-1~R(P2-012)-1CP5F4(P) -a5F4(a) ]  

A (6; 1, 1) = - (27.6!)-1xR(P2--2)-1CP7Fg(P) -a7F6(a)]  

~ ( 1 ;  1, 1) = - (22.11)--1~(P2-012)-1CP3F1(~) -a3F1(a)] 

B (3  ; 1, 1) = + ( 24' 3 !)-' T ( P 2 - ~ 2 ) - 1 @ 5 F 3 (  P )  -a5F3 ( C Y )  ] 

B (5 ;  1, 1) = - (26.5!)-1~(P2-~2)-1cB7F5(P) - a 7 F 5 ( ~ ) ]  

Blanchard13 for one-electron two-center integrals, and 
used by one of the authors recently for one-electron 
two-center integrals over solid spherical harmonics14 
and for two-electron two-center integrals15 is employed 

k ,  u, and v are the spherical coordinates of the k vector, 
and R is the distance between the two centers a and b. 
In the one-center case (R=O), the integral is given by 

here. For the two-electron case, this method -states 
that if we have the integral 

J =  (2 T )  -3/p( k) gT( k) hT( k) dk. (11) 

then the integral is recovered by 

For further details concerning the evaluation of the 
transforms, the reader should consult Ref. 14. (8' 

111. RESULTING INTEGRALS OVER AUXILIARY 
FUNCTIONS 

J =  (2r)-3/jfP(k)pT(k)hT(k) exp(-ik-R)dk, (9) 

where the superscript T indicates the appropriate 

BY the application of Eq. (9), we can write the 
integrals of Eq. (7) as 

Fourier transform, [ N ,  L, M],lTOIT[iV', L', M']bZT 

+T(k) =I exp(ik.r)+(r)dr, (10) 

TABLE VI. A(2m; 1, 1) and B(2rn-t-l; 1, 1) in terms of Fn(r) 
for equal charnes. 

l3 F. P. Prosser and C .  H. Bianchard, J. Chem. Thys. 36, 1112 

l4 M. Geller, J. Chem. Phys. 39.84 (1963). 
l5M.  Geller, J. Chem. Phys. 39, 853 (1963). 

(1962). 

X exp( -ik.R)dk, (12a) 

12= (2 ~ ) - - 3 / c : N ,  L, M],lT02T[W, L', 

X exp(-ik.R)dk. (12b) 

To evaluate Eqs. (12) , we need the transforms of 01, 
O2 and of the [iV, L, M I .  From Eq. (11) of Ref. 1416 

O,T= -+rP2(cosu) ; (134 

OzT= --QTP22(COSU) COS221, (13b) 

and from Eq. (18) of Ref. 14: 

[I, L, MI'= A .  

16Reference 14 contains further details and definitions of all 
the quantities presented here. 



2316 M .  G E L L E R  A N D  R .  W .  G R I F F I T H  

TABLE VII. K,p(y) polynomials of Eqs. (26) for selected i n  and p values. 
.- 

3 3  
k2O(Y) = l+-+- 

Y Y2 

3 6 6  
k*' (Y)  = l+-+-+- 

Y Y2 YS 

4 12 24 24 
k22(y) = 1+-+-+-+- 

Y Y2 Y3 Y4 

6 24 72 144 144 
k23(Y) = 1+-+-+-+-+- 

Y Y2 Y3 Y4 Y6 

6 15 15 
k3O(Y) = l+-+-+- 

Y Y2 Y3 

5 15 30 30 
k3Y-i) =I+-+-+-+- 

Y Y2 Y3 Y4 

5 20 60 120 120 
k32(Y) = l+-+-+-+-+- 

Y Y2 Y3 Y4 Y6 

6 30 120 360 720 720 
k3YY) If-+-+-+-+-+, 

Y Y2 Y3 Y4 Y5 y 

10 45 105 105 
Y Y  Y Y 

K4O(Y) = 1+-+,+,+7 

10 55 195 420 420 
k4l(Y)  = l+-+-+-+-+- 

Y Y2 Y3 Y4 Y6 

11 75 360 1200 2520 2520 
kd2(Y) = 1+-+-+-+-+-+-- 

Y Y2 Y3 Y4 Y5 Y6 

13 108 660 3000 9720 20 160 20 60 
k43(Y) = 1+-+-+,+-+-+-+- 

Y Y2 Y Y4 Y5 Y6 Y' 

15 105 420 945 945 
kP(Y)  = l+-+-+-+-+- 

Y Y2 Y3 Y4 Y6 

14 105 525 1785 3780 3780 
W Y )  = l+-+-+y+-+y+- 

Y Y2 Y Y' Y Y6 
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TABLE VI1 (Continued) 

14 119 735 3360 10920 22680 22680 
k6YY) = 1+-+,+,+-+- +-+- 

Y Y Y Y4 Y5 Y6 Y7 

15 147 1092 6300 27 720 88200 181440 181440 
W Y )  = l+-+-+-+-+- +- +--I----- 

Y Y2 Y3 Y4 Y6 Y6 Y7 Y8 

21 210 1260 4725 10395. 10395 keo(r) = 1+-+,+-+,-+,+- 
Y Y  Y3 Y Y Y6 

21 231 1680 850.5 29295 62370 62370 
kbl(Y) = 1+-+-+-+-+-+-+- 

Y Y2 Y3 Y4 Y6 Y6 Y7 

22 273 2373 15225 71 820 238140 498960 498960 kt?(r) = 1+-+-+-+- +- +-+-+- 
Y Y2 Y3 Y4 Y6 Y6 Y' Y8 

24 339 3465 27090 163 170 740880 2404080 4989600 4989600 
Y9 

+ 
YE 

+ 
+ Y7 

k63(Y) = 1+-+7+-+-+-+- 
Y Y Y3 Y4 Y6 Y6 

where Making use of the auxiliary functions 

and 

P = t 1 + t 2 1  

and SO is the 
ence, Table I 

where j,(z) is a spherical Bessel function,17 we can 
express all the nonvanishing integrals of Eqs. (7) 
(through N=3)  in terms of the A and B auxiliary 
functions defined above. The results for II are collected 
in Table I1 and the results for 1 2  in Table 111. From 
Tables I1 and I11 we see that all the integrals are ex- 
pressible in terms of A(2m; p ,  q ) ,  where m=O, 1, 2, 
and 3; and B(2m+l; p ,  q)  where m=O, 1, and-2; and 
p and q take on values up through p = q = 4 .  

largest integer in $ ( N - L ) .  For conveni- 
lists the specific transforms of [ N ,  L, M ]  

for all cases through N = 3. 
The next phase in the evaluation of Eqs. (12) is the 

formation of all the products [ N ,  L, MlUlTO~,zTX 
[A", L', M ' ] t , 2 T ;  e.g., 

[1 S]aiTOzT[l s]t,zT= - ~ ~ p u ~ p b ~ ( k ~ + p . " ) - ~  IV. EVALUATION OF AUXILIARY FUNCTIONS 

( k 2 + p b 2 ) - 2 p 2 2 ( C O S U )  c0s2v. (15) 

Once these products have been obtained, it is easy to 
derive the selection rules for 11 and 1 2 :  

(A) I I  vanishes unless M =  M I ;  thus the only remaining 
terms are those in which we have SS ,  SZ, 22, 

The auxiliary functions A(2m; p ,  q )  and B(2m+l; 
p ,  q )  of Eqs. (16) and (17) can all be generated from 
the primitives A(2m; 1, 1) and B(2m+l; 1, 1) by the 
use of the following generating formulas: 

A(2m; p+l, q + l )  = ( - $ R 2 ) p + q [ p ! q ! ] - 1  

X[.l-'(d/acu)IPCB-'(a/ap)]qA(2m; 1, 1 ) ;  (18) 
. ,  

1111, iiB, AA) or &a. 
(B) -- nn. 

"See A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G.  
Tricomi, Higher TranscendentaC Functions (McGraw-Hiii Book 
Company, Tnc., New York, 1953), Vols. I, I1 for definitions and 
properties of all the special functions utilized here. 

vanishes unless we have either SA, ZA, nn, or 
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TABLE VIII. A Om; P, 9 )  and B(2m+l;  P ,  4) in terms of kmP(y)-case of different nuclear charges (a#@).* 

A ( 0 ;  3, 2) =- ?rR7 e-~{~[(P2-a2)4]-1+(4p)-1[(p2-az)3]-1~ 

A ( O ;  3, 3) =-?rRg 3[(~z-d)5]-1+-[(~z-~2)4]-1+(1~p)--1-} 3 kio(P) 
40 (P'--a2)3 

~[(~z-a')6]-1+(P)-1[(~z-a2)5]-1+(16p2)-i-} klO(P) 
( 0 ' 4  -a') 

B(1; 3, 3) = -7rR8 
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TABLE VI11 (Continued) 

2319 

]-1+(16P)-1[(p2-~2)4]-1] 
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TABLE VI11 (Continued) 
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TABLE VI11 (Conlinzrd) 

To obtain A(2m; q. f i )  from A(2m; p, p) and B(Zrnf1; q, p) from B(Zn&+l; p, q )  interchange 01 and p. (a-p; 6-01). 

and 

B(2m+l; p t 1 ,  q+1) = (-3R2)p+Q[p!q!]-l 

Ca-'(d/aa) IPW (a /@)  lqB(2m+ 1 ; 1, I ) ,  (19) 

where in Eqs. (18) and (19), a=paR and P=pbR. 
For the evaluation of A(2m; 1, 1) and B(2m+l; 

1, 1) it is useful to define one further auxiliary function 

Fn(y) =/l( 1 -y2) n exp ( -yy) dy, ( 20) 
0 

which has the differential recursion relation 

(a/ar)F,(y) =3(n+l)-'[TFn+l(Y) -11. (21) 

From Appendix A, the following analytical expression 
can be derived for F,(y) 

Fn(y) = 2(-1)'(;)(2k) !y-2'-1 
k=O 

- (  -1)"2"n!y-"(2/?ry)tK,+l(y), (22) 

where K,,+i(y) in Eq. (22) is the hyperbolic Bessel 
function17 of half integral order. Table I V  lists the 
explicit expressions for F n ( y )  (n=O, 1, 2, o s . ,  7) that 
are needed in the evaluation of A(2m; 1, 1) and 

As derived in Appendix B, the primitives A(2m; 
1, 1) and B(2mf1; 1, 1) can be expressed in terms of 
the F,(y) functions defined in Eq. (20) : 

B(2m+l; 1, 1). 

A (2m; 1, 1) = ( -l)m?rR2-2m-1 [ (2m) !]-I (0'-a') -1 

X {P2"+'F2rn(P) -a2mf1F2m(a) 1, (23a) 

and 

B(2m+l; 1, 1) = (-l)m+17r2--277--2 [ (2m+ 1) !]-I 

X (P2-a2)-' (P2m+3F2m+~(P) -a2m+3F2m+~(a) 1, (23b) 

for the case of different effective nuclear charges 
p , # p b  (and therefore a#P) and 

~ ( 2 m ;  1, 1) = (-1)mn~2-2m-3 [ (2m+ 1) !]-ly2m-l 

X (y2F2m+1(Y)+2(2m+l)2Fzm(Y) -71 (244  
and 

~ ( 2 ~ + 1 ;  1, 1) = (-1)m+lT2--2m--4 [(2m+2) !r' 
Xy2"+l{Y2F2m+2(Y) +2(2m+2) (2m+3) Fz~+I(T) -Y} 

(24b) 

for the case of identical effective nuclear charges 
p a = p b  (and therefore a = P = y ) .  Table V gives the 
explicit expressions for A (2m; 1, l ) ,  (m=O, 1,2, and 3), 
and B(2m+l; 1, l ) ,  (m=O, 1, 2) in terms of the 
Fn(y) functions as derivable from Eq. (23) for the 
case of unequal nuclear charges and Table VI gives 
the corresponding expressions derivable from Eqs. 
(24) for equal nuclear charges. 

A final simplification of the resulting formulas is 
achieved if we define the following polynomials in l/r 
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TABLE IX. A ( 2 m ;  p ,  q)  and B(2rn+l ;  p ,  q)  in terms of K , p ( - y )  case of equal nuclear charges (a=j3)." 
~~ 

A (0; 3, 2) = (4!25)-1?rR7y-4K30(y)e-~ 

A (0; 3,3) = A  (0; 4,2) = ( 5  !26)-1?r~9r-5~~0(Y)e-~ 

A (0; 4,3) = (6!27)-1sR11y-6k50(y)e-~ 

A (0; 4,4) = (7!28)--l?rR13y-7k60(~)e-7 

B(1; 3, 2) = (4!25)-1?rR6y-3K20(y)e-y 

B(1; 3, 3) =B(1; 4, 2) = (5!26)-1?rR8y-4K30(y)e-Y 

B(1; 4,3) = (6!27)-1?rR10y-5k40(y)e-7 

B(1; 4,4) = (7!28)-1?rR12y-6KP(y)e-~ 

A ( 2 ;  2, 2) = - ?rR5[(3!24)-1y-3K$(y)e7- (3/2)y-*] 

A (2; 3, 2) = - ~R~[(4!2~)--ly-~@(y)e-7- (3/2)y-lo] 

A(2; 3, 3) = A ( 2 ;  4, 2) = - sRg[(5!26)-1y-5K25(y)ey- (3/2)y-12] 

A (2 ;  4,3) = - ?rR11[(6!27)-1y-6K26(y)e-y- (3/2)y-14] 

A (2; 4,4) = - ?rR13[(7!28)-1y-7K27(y)ey- (3/2)y-16] 

B(3; 3, 2) = - ~ R ~ [ ( 4 ! 2 ~ ) - l y - ~ K ~ ~ ( y ) e y -  (15/2)y-lo] 

B(3; 3,3) =B(3;  4, 2) = - ?rR8[(5!26)-1y-4~~5(y)e7- (15/2)y-12] 

B ( 3 ;  4, 3) = - ?rR'0[(6!27)-1y-5K36(y)e-Y- (15/2)y-14] 

B(3; 4,4) = - ?rR12[(7!28)--ly-6K37(y)e-y- ( 1 5 / 2 ) ~ - ~ ~ ]  

A (4; 3, 2) = ~ R ~ [ ( 4 ! 2 ~ ) - - l y - ~ K 4 ~ ( y ) e 7 +  ( 15/4)y-lo- (525/2)y-12] 

A (4; 3, 3) =A(4; 4, 2) = xRg[(5!26)-1y-5R$(y)e-y+(15/4)y-12-315y-14] 

A (4; 4,3) = ?rR11[(6!27)-1y-6K46(y)e-7f(15/4)y-14-(735/2)y-16] 

A (4; 4,4) = aR13[(7!28)-1y-7K~7(y)e~+(15/4)y-16-420y-18] 

B(5;  3, 3) = ?rRB[(5!26)--ly-4K55(y)e-Yf (105/4)y-12-2835y-14] 

B(5;  4, 3) = ?rR10[(6!27)-1y-5k56(y)erf ( 1O5/4)y-l4- (6615/2)y-16] 

B(5;  4, 4) = ?rR12[(7!28)--ly-6K57(y)e-Yf (105/4)y-16-3780y-1s] 

A(6; 3, 3) = - rR9[(5!26)-1y-5K65(y)e-Y- (105/16)y-12+(2835/2)y-14- (218 295/2)y-16] 

A ( 6 ;  4, 3) = - ?rR11[(6!27)-1y-6k66(y)e-Y- (105/16)y-14+ (6615/4)y-16-145 530y-18] 

A(6; 4,4) = -?r*R13[(7!28)-1y-7K~7(y)e-~-(l05/16)y-16+18~0y-18-l87 110y-20] 

* Since a=b--y, the following identities hold: d(2m; ), q)=A(Zm; q, )) and B(Zm4-1, ), q)=B(Zrnfl, q, )). 

and values-are needed but are not71isted due to the cumber- 
some coefficients, though these can easily be obtained 

The extensive tabulation of all the A (2m; p ,  q )  and 
B(2m+l; p ,  q)  needed for integrals 11 and 12 of Eqs. 
(7)  as shown in Tables I1 and I11 is presented in 
Table VI11 for the case of different nuclear charges 

K2n+lp(Y) =Yp-2[1- (alar) ]'Y2-PK2n+lP1(Y) from (26). 
Table VI1 is a partial collection of some of the @(y)  
Eeeded i.". this study. This table contrtins all the p l y -  
nomials needed for the case of unequal nuclear charges. 
For the case of identical nuclear charges, higher p 
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and in Table IX for the case of equal nuclear charges 
in terms of the polynomials k , p ( y )  defined by Eqs. 
(25) and (26) and tabulated in Table VII. 

V. ONE-CENTER RESULTS 

For the one-center case, we have, from the properties 
of spherical Bessel functions, 

j d 0 )  = 6 h 0 ,  (27) 
so that the only terms contributing to the one-center 
result are those in which the terms A ( 0 ;  p ,  q)  arise. 
This is equivalent to the additional selection rule 
I L+L' I =2, 4. The final results for the one-center 
case with different nuclear charges are presented in 
Table X and for the case of equal nuclear charges in 
Table XI. 

APPENDIX A: EVALUATION OF F,,(y) 

From Eq. (20) of the text, Fn(-y) is given by 

F ,  (7) = /L ( 1 -yz) ne-rudy. (All  
0 

This integral is equal to 

F,(y) = ~ m ( l - y z ) n e ~ ~ d y - j ( m ( l - y z ) ~ e - ~ ~ d y .  (A2) 

For the first term in (A2), after expanding ( l - ~ ~ ) ~  
by the binomial expansion and integrating termwise, 
we obtain 

0 

For the second term in (A2), noting that an integral 
representation of the hyperbolic Bessel function K,++ is 

Kn++ (Z)  = (3Z) n+f d ( vz !) -'l e-u' ( y2 - 1 ) "dy, (A4) 
m 

we finally obtain 
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TABLE XI. One-center integrals Zl and I2 (R = 0) -equal nuclear charges: 

3DZ,]= (1/960) p3 
3DZ,] = (1/2160) p3 
3DZa]= ( 1/5760)p3 

2 PZ,,] = ( 1/480) p3 
3 PZ,] = (1/960) p 3  
3 PZ,] = ( 1/1600) p 3  
3DZa]= -(1/12 096)f3 

2PITa]=[2P?Ia I 1 1 2PEa]=-(1/960)p3 

3PIIa]=[2P?Ia 11 1 3PEa]=-(1/1920)p3 

3PIIa]=[3P?ia I 1 I 3PIi,]=-(1/3200)p3 

3Da]=[3D?ia I 1 13D?Ia]=-(1/24 192)p3 

1 I3DAa]=[3DZa I 1 I3DLa]= (1/12 096)p3 

2 I 3DA,]= (1/480)flp3 

2 I 3DA,]= ( 1/1080)ap3 

2 I 3DA,] = ( 1/2880)~&P 

2 I 2PIIa]=-[2PEa 12 I 2Pfi,]=(1/160)p3 

2 1 3PIIa]=-[2Pfia 1 2  13Pfia]=(1/320)p3 

Thus, taking the difference of (A3) and (AS), we have 
Eq. (22) of the text.18 

APPENDIX B:  DERIVATION OF A(2m; 1, 1) AND 
B(2m+1; 1, 1) IN TERMS OF THE F,(y) 

Equation (16) of the text, when p = q =  1, is given by 

Using the integral representation of j,(x) ,17 

jp(x) = [p!]-l (x/2) pr (1 - y2) cosxydy. (B2) 
0 

In  Eq. ( B l ) ,  inverting the order of integration, and 
integrating over K, noting that 

X (pbzm+l exp( -p,Ry) -~2~+' exp( -p,Ry) 1, ( ~ 3 )  

'*The author is indebted to S. Boorstein for this simplified 
derivation. 

we have 
A(2m; 1, 1)=(- l )m~R2-2m- '  C(2m) !]-'(p"a2)-' 

034) X Irn( 1 -y2) 2rn{p2m+le--By-a2m+le-cryJ dy, 
0 

where in Eq. (B4) we have replaced pbR by and 
p,R by a. Using the definition of F, (y )  as given by 
Eq. (20) of the text, Eq. (23a) is immediately ob- 
tained. A similar application of the integral representa- 
tion Eq. (B2) forjzm+1(kR), followed by inverting the 
order of integration and using Eq. (B3) appropriately 
leads to the result quoted in Eq. (23b) for B(2m+l; 

Equations (24a) and (24b) of the text follow in a 
straightforward manner by choosing paR = pbR= y, 
using Eq. (B2) and the analog of Eq. (B3) in the case 
when pa=$, 

1, 1).  

* k2m+2 coskRydy 
(k2+p2)2 

= ( - 1)  in) { 2m+ 1 -ay)pazm-le-a-rry * 035) 


